|本期目录/Table of Contents|

基于肿瘤酸性微环境的pH成像方法的研究进展

《现代肿瘤医学》[ISSN:1672-4992/CN:61-1415/R]

期数:
2019年20期
页码:
3725-3729
栏目:
综述
出版日期:
2019-09-08

文章信息/Info

Title:
Research progress of pH imaging methods based on tumor acidic microenvironment
作者:
郭晓露1;?2;?阿 荣1;?2;?孙夕林1;?2
1.哈尔滨医科大学附属第四医院TOF-PET/CT/MR中心, 黑龙江 哈尔滨 150028;2.哈尔滨医科大学分子影像研究中心, 黑龙江 哈尔滨 150028
Author(s):
Guo Xiaolu1;?2;?A Rong1;?2;?Sun Xilin1;?2
1.TOF-PET/CT/MR Center,the Fourth Affiliated Hospital of Harbin Medical University,Heilongjiang Harbin 150028,China; 2.Molecular Imaging Research Center (MIRC),Harbin Medical University,Heilongjiang Harbin 150028,China.
关键词:
肿瘤酸性微环境;?荧光光学成像;?核医学成像;?CEST;?pH敏感纳米颗粒
Keywords:
tumor acidic microenvironment;?fluorescence optical imaging;?nuclear medicine imaging;?CEST;?pH sensitive nanoparticles
分类号:
R730
DOI:
10.3969/j.issn.1672-4992.2019.20.041
文献标识码:
A
qq自动领红包软件:
肿瘤细胞外的酸性环境形成有多种原因,其中上调代谢导致的乳酸和CO2的增加,缺氧和灌注不良以及过表达的H+的转运蛋白占据主导作用。肿瘤细胞内存在pH梯度,细胞内pH(pHi)高于胞外pH(pHe)。这种梯度通过促进增殖、逃避细胞凋亡、代谢适应、迁移和侵袭来促进癌症进展。 因此,我们可以通过pH来诊断肿瘤并可以确定肿瘤的恶性程度,监测治疗疗效。目前已经开发了许多基于肿瘤酸性微环境的成像方法,有可以精准测量肿瘤部位pH值的光学、核医学及磁共振的方法,还有基于磁共振诊疗一体化的pH敏感的纳米探针,用于肿瘤的诊断和治疗。 本文主要探讨了肿瘤酸性微环境形成的机制以及不同类型的肿瘤酸性微环境的成像方法用于pH的精准测定和肿瘤的诊断、治疗。
Abstract:
The extracellular acidic microenvironment of tumor is formed for a variety of reasons,among which an increase of lactic acid and CO2,hypoxia and poor perfusion,and overexpressed H+ transporters play important roles.There is a pH gradient in the tumor cells that keeps the intracellular pH (pHi) above the extracellular pH (pHe).This gradient promotes cancer progression by promoting proliferation,evading apoptosis,metabolic adaptation,migration and invasion.Therefore,we can diagnose the tumor by pH,determine the degree of malignancy of the tumor and monitor the efficacy of the treatment.Many imaging methods based on the acidic microenvironment of tumors have been developed,including optical methods,nuclear medicine methods and magnetic resonance methods that can accurately measure the pH of tumor sites,as well as pH-sensitive MRI nanoparticles that can be used to diagnose and treat tumors.This review mainly discusses the mechanism of the formation of tumor acidic microenvironment and the imaging methods of different types of tumor acidic microenvironment for the accurate determination of pH,diagnosis and treatment of tumor.

参考文献/References

[1]Gillies RJ,Raghunand N.MRI of the tumor microenvironment[J].Journal of Magnetic Resonance Imaging,2002,16(4):430.
[2]Stüwe L,Müller M,Fabian A,et al.pH dependence of melanoma cell migration:Protons extruded by NHE1 dominate protons of the bulk solution[J].Journal of Physiology,2007,585(2):351.
[3]Ganapathy V,Thangaraju M,Prasad PD.Nutrient transporters in cancer:Relevance to Warburg hypothesis and beyond[J].Pharmacol Ther,2009,121(1):29-40.
[4]Gatenby RA,Gillies RJ.Glycolysis in cancer:A potential target for therapy[J].Int J Biochem Cell Biol,2007,39(7):1358-1366.
[5]Brahimi-Horn MC,Pouysségur J.Hypoxia in cancer cell metabolism and pH regulation[J].Essays in Biochemistry,2007,43(3/4):165-178.
[6]Goda N,Kanai M.Hypoxia-inducible factors and their roles in energy metabolism[J].Journal of Medical Postgraduates,2014,95(5):457-463.
[7]Nakazawa MS,Keith B,Simon MC.Oxygen availability and metabolic adaptations[J].Nature Reviews Cancer,2016,16(10):663-673.
[8]Jamali S,Klier M,Ames S,et al.Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function[J].Scientific Reports,2015(5):13605.
[9]Riganti C,Gazzano E,Polimeni M,et al.The pentose phosphate pathway:An antioxidant defense and a crossroad in tumor cell fate[J].Free Radic Biol Med,2012,53(3):421-436.
[10]Menendez JA,Lupu R.Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J].Nature Reviews Cancer,2007,7(10):763.
[11]Noor SI,Dietz S,Heidtmann H,et al.Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II[J].Journal of Biological Chemistry,2015,290(7):4476-4486.
[12]Tannock IF,Rotin D.Acid pH in tumors and its potential for therapeutic exploitation[J].Cancer Research,1989,49(16):4373-4384.
[13]Nelson N.A journey from mammals to yeast with vacuolar H+ -ATPase (V-ATPase) [J].Journal of Bioenergetics & Biomembranes,2003,35(4):281-289.
[14]Chiche J,Ilc K,Laferrière J,et al.Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH[J].Cancer Research,2009,69(1):358-368.
[15]Cordat E,Casey JR.Bicarbonate transport in cell physiology and disease[J].Biochemical Journal,2009,417(2):423-439.
[16]Vaupel P,Okunieff P,Neuringer LJ.Blood flow,tissue oxygenation,pH distribution,and energy metabolism of murine mammary adenocarcinomas during growth[J].Adv Exp Med Biol,1989(248):835-845.
[17]Corbet C,Feron O.Tumour acidosis:From the passenger to the driver seat[J].Nature Reviews Cancer,2017,17(10):577-593.
[18]Estrella V,Chen T,Lloyd M,et al.Acidity generated by the tumor microenvironment drives local invasion[J].Cancer Research,2013,73(5):1524-1535.
[19]He H,Tu X,Zhang J,et al.A novel antibody targeting CD24 and hepatocellular carcinoma in vivo by near-infrared fluorescence imaging[J].Immunobiology,2015,220(12):1328-1336.
[20]Takahashi S,Kagami Y,Hanaoka K,et al.Development of a series of practical fluorescent chemical tools to measure pH values in living samples[J].Journal of the American Chemical Society,2018,140(18):5925.
[21]Si HY,Cho MK,Kang JS,et al.Carboxylate-containing two-photon probe for the simultaneous detection of extra-and intracellular pH values in colon cancer tissue[J].Analytical Chemistry,2018,90(13):8058-8064.
[22]Chen LQ,Pagel MD.Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods[J].Advances in Radiology,2015,2015(6):1-25.
[23]Vvere AL,Biddlecombe GB,Spees WM,et al.A novel technology for the imaging of acidic prostate tumors by positron emission tomography[J].Cancer Research,2009,69(10):4510-4516.
[24]Sun A,Tang X,Nie D,et al.Positron emission tomography imaging of lesions pH using 11C-labeled bicarbonate[J].Cancer Biotherapy & Radiopharmaceuticals,2018,33(7):285-294.
[25]Ward KM,Balaban RS.Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST) [J].Magnetic Resonance in Medicine,2015,44(5):799-802.
[26]Chan KW,Liu G,Song X,et al.MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability[J].Nature Materials,2013,12(3):268-275.
[27]Ferrauto G,Di Gregorio E,Ruzza M,et al.Enzyme responsive LipoCEST agents:Assessment of MMP-2 activity by measuring the intra-liposomal water 1H-NMR resonance shift[J].Angewandte Chemie,2017,129(40):12170-12173.
[28]Bar-Shir A,Yadav NN,Gilad AA,et al.Single (19)F probe for simultaneous detection of multiple metal ions using miCEST MRI[J].Journal of the American Chemical Society,2015,137(1):78-81.
[29]Longo DL,Sun PZ,Consolino L,et al.A general MRI-CEST ratiometric approach for pH imaging:Demonstration of in vivo pH mapping with iobitridol[J].Journal of the American Chemical Society,2014,136(41):14333-14336.
[30]Zhou J,Lal B,Wilson DA,et al.Amide proton transfer (APT) contrast for imaging of brain tumors[J].Magnetic Resonance in Medicine,2010,50(6):1120-1126.
[31]Crayton SH,Tsourkas A.pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments[J].Acs Nano,2011,5(12):9592-9601.
[32]Caravan P,Ellison JJ,McMurry TJ,et al.Gadolinium (III) chelates as MRI contrast agents:Structure,dynamics,and applications[J].Chem Rev,1999,99(9):2293-2352.
[33]Preslar AT,Parigi G,McClendon MT,et al.Gd(III)-labeled peptide nanofibers for reporting on biomaterial localization in vivo[J].Acs Nano,2014,9(11):7325-7332.
[34]Jiang D,Zhang X,Yu D,et al.Tumor-microenvironment relaxivity-changeable gd-loaded poly(L-lysine)/carboxymethyl chitosan nanoparticles as cancer-recognizable magnetic resonance imaging contrast agents[J].Journal of Biomedical Nanotechnology,2017,13(3):243-254.
[35]Martin DR,Krishnamoorthy SK,Kalb B,et al.Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols[J].Journal of Magnetic Resonance Imaging,2010,31(2):440-446.
[36]Mi P,Kokuryo D,Cabral H,et al.A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy[J].Nature Nanotechnology,2016,11(8):724-730.
[37]Zhao Z,Wang X,Zhang Z,et al.Real-time monitoring of arsenic trioxide release and delivery by activatable T1 imaging[J].Acs Nano,2015,9(3):2749-2759.
[38]Chen Y,Xu P.Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics[J].Advanced Functional Materials,2014,24(28):4386-4396.
[39]Xu C,Zhang C,Wang Y,et al.Controllable synthesis of a novel magnetic core-shell nanoparticle for dual-modal imaging and pH-responsive drug delivery[J].Nanotechnology,2017,28(49):495101.

备注/Memo

备注/Memo:
国家重点基础研究发展计划(编号:2015CB931800);National Natural Science Foundation of China(No.81627901,81471724);国家自然科学基金项目(编号:81627901,81471724)
更新日期/Last Update: 1900-01-01